Services

v1.26

Sirenia

September 23, 2020

Services September 23,2020

Contents

1 Services
11 Mail .. e e e e
1.1.1 Send ... e e
1.1.2 List . . e e e

11.3 MailObject e e e
1.2 Serial port e e e e e
121 Sendingdata L e
1.2.2 Receivingdata

aa A A W W NN

A service module is like a built-in api module. But unlike api modules, service modules are config-
urable. For instance the mail service can be configured with the information necessary to connect to
mail servers. This means a flow that needs to send or receive emails does not need to contain mail
credentials and other sensitive information.

Services are accessed via the Service module. getting access to a mail service with the configured
key myMailis done as follows:

var m = Service. (’myMail’, Service.) s

Now the variable m holds a reference to a mail-service ready to use.

Services can usually also be used to set up flow triggers. In the mail service example, flows can be
triggered when emails are received from the mail server configured in the mail service.

1 Services

The following services are available:

+ Mail
« Serial port

1.1 Mail

The mail-service module has functionality to list and send mails.

Sirenia 2

Services September 23,2020

1.1.1 Send

Sending a mail requires at least a list of recipients, a subject and a body and has optional support for
defining the from address, list of cc-addresses and attachments.

Arguments
Inacalllike send(to, subject, body, options) thearguments are as follows:

« tois a list of email-addresses which will receive the message

+ subject isthe subject of the mail

« body is the main text of the mail

« optionsisan optional object which may contain the following properties
« fromthe sender address (default is “7manatee@sirenia.eu”)

+ ccisa list of cc-addresses

« attachmentsisalist of files to attach (each item is a path to a file)

Examples

var m = Service. (’myMail’, Service.) §
// Simple send
m. ([’jonathan@sirenia.eu’], ’Hello from a bot’, ’Manatee says hello’). (1
// With all options
m. (
[’jonathan@sirenia.eu’],
’Hello from a bot’,
’Manatee says hello’,

{
>from’: ’bot@somewhere.com’,
’cc’s [’martin@sirenia.eu’, ’los@sirenia.eu’, ’lykke@sirenia.eu’],
>attachments’: [’C:/Users/SomeUser/SomeFile.txt’]
}
). (10000) ;
1.1.2 List

List is used to list mails in a given mail-box. The return value is a list of mail objects.

Sirenia 3

Services September 23,2020

Arguments

« mailbox is the mailbox to list (default is the INBOX)

Examples

// List mails 1in dinbox
var inbox = m. Os
var mailsElsewhere = m. (’someothermailbox’) s

1.1.3 Mail Object

The mail object returned from list has the following properties:

+ idid of the mail

« to list of recipients

« cc list of cc-addresses

« fromsender address

« subject subject

+ body mail text

« attachments alist of attachments

And the following methods:

« delete(mailbox) to delete the mail from the given mailbox (default is INBOX)

« move(to, from) to movethe mail between two mailboxes

« writeAttachmentsToD1i sk to write the attachments to disk (access them then viathe at-
tachments property)

1.2 Serial port

The serial port service module lets flows and triggers communicate via serial ports on the local ma-
chine.

Data can be sent and received as either binary data or text. Receiving data can be done synchronously
or asynchronously as shown in the examples below.

1.2.1 Sending data

Sending data is simple - obtain the service and give it a string or an array of bytes (numbers) to send.
Sending is always synchronous (returns after data has been sent):

Sirenia 4

Services September 23,2020

var myDevice = Service. (’my-device’, Service.) 8
// Send text

myDevice. (’scan barcode, please’)}

// Send binary data

myDevice. ([Ox09, OxBOA, OxOB, 0x0C])3

1.2.2 Receiving data

All methods for receiving data come in synchronous and asynchronous forms such as receiveOne
and receiveOneAsync. They also all accept as their last argument an options object which can
have the following properties: - timeout is an optional override of how long to wait for data to arrive
in milliseconds. The default is 3000. - binary is an optional override of the format in which the data
is returned. true means a byte array is returned, false means a text string is returned. Receiving
data as text requires the device to encode text by the same encoding configured in the serial port
service. The defaultis false.

Request / reply

As a convenience for the common task of sending a request and receiving a reply, two requestRe-
ply methods are available.

var myDevice = Service. (’my-device’, Service.) 8

// Send and receive text synchronously. Here we override the default receive tim
var barcodeText = myDevice. (’scan barcode, please’, { timeout: 10000
// When binary data is sent, the data received 1is also binary data by default -
var replyBytes = myDevice. ([0x09, OX0A, OxOB, 0x0C])s

The asynchronous form returns a task object. The task object behaves the same as the tasks used in
the Http and Task modules.

var task = myDevice. (’scan barcode, please’)s
// ... Do other things while we wait for the response...

task. Os

var barcodeText = task. 3

Receive one message

If we expect to receive a data message from the device, we can receive it like so:

Sirenia 5

Services September 23,2020

var messageText = myDevice. O
// ... or as undecoded bytes
var messageBytes = myDevice. ({ binary: true });

The asynchronous form offers no surprises:

var task = myDevice. Os

// ... Do other things while we wait for the message...
task. O

var messageText = task. H

Receive multiple messages

Sometimes we expect a device to send multiple messages. If we use receiveOne, thereis arisk that
a message arrives between invocations and is lost. To address this situation, we can use receive-
Many. Its syntax is slightly more complex as we must provide the receiveMany method with a
callback which will be called for each received message.

The callback must return true while more messages are expected. This means when we receive what
we know to be the last message, we can return false and receiveMany will return control to the
flow immediately without waiting for the timeout to elapse.

Note that Api methods that show dialogs (for instance Dialog.input or Debug.showDialog)
are not supported within the callback. Use the callback to collect the messages - parsing only enough
to determine the return value of the callback.

var receivedMessages = []3
// Listen for messages until the default timeout elapses and put them in the arr
myDev-ice. (function(message) {

receivedMessages. (message) s

return true;

s

// Listen for messages until the ’BYEBYE’ message 1is received (or until the time

myDevice. (function(message) {
receivedMessages. (message) ;
return message !== ’BYEBYE’j

Ps

This method also has an asynchronous form to enable parallel processing:

Sirenia 6

Services September 23,2020

var receivedMessages = [];
// Listen for messages until the default timeout elapses and put them in the arr

var task = myDevice. (function(message) {
receivedMessages. (message) ;
return true;
})s
// ... do something else while messages are received
task. Os

// Now we can process the messages in the ’receivedMessages’ array.

Latest inbound messages

This service module keeps track of the most recent messages received from the device. This can be
useful if a flow is triggered by the reception of a message and the flow needs to inspect the messages
preceding the triggering message. Note that messages are only added to this collection while a receive
operation is active on the serial port. An active serial port trigger will cause messages to be added. A
flow with a long running receive operation likewise.

The history is returned as an array of entry objects with the following properties: - time is a Date
object indicating when the message was received - data is a string or an array of bytes depending on
the optional binary option

var history = myDevice. O
if (history. > 0) {

var lastEntry = history[history. = d]lg

// ... do something with the last received entry
}

// Get binary data in stead
history = myDevice. ({ binary: true });

Open [close port

The methods for sending and receiving data will open the port automatically and close it again when
they are done. This means it isn’t strictly necessary to excplicitly open and close the port. If for any
reason it is undesirable for the port to only be open while itis in use, you can open and close the port
excplicitly from your flow:

Sirenia 7

Services September 23,2020

myDevice. Os
// ... communicate with device
myDevice. O

Note that manatee manages the state of the physical serial port intelligently. A serial port trigger and
a flow can use the same serial port service at the same time. This means that calling .open() and
.close () may not have a direct effect on the physical port if a trigger is already keeping the port
open in order to listen for triggering messages. The open and close methods merely express intent
to use the port for more than one operation. As such they guarantee that the port will not automat-
ically close between separate operations. Excplicitly closing the port isn’t a strict requirement as it
will happen automatically when the flow has completed.

Byte / string conversions

The serial port service module exposes the means to convert back and forth between byte arrays and
their string representation under the encoding configured on the serial port service in cuesta.

// myDevice service uses us-ascii

var text = ’abc’y

var bytes = [0Ox61, 0x62, 0x63]

var decodedText = myDevice. (bytes)s
var encodedBytes = myDevice. (text)

// text and decodedText are now the same
// bytes and encodedBytes are now the same

Sirenia 8

	Services
	Mail
	Send
	List
	Mail Object

	Serial port
	Sending data
	Receiving data

